

Available online at www.sciencedirect.com

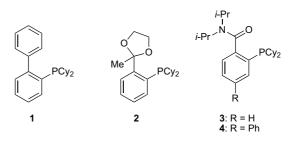
Tetrahedron Letters 45 (2004) 1999-2001

Tetrahedron Letters

A novel class of amide-derived air-stable P,O-ligands for Suzuki cross-coupling at low catalyst loading

Wei-Min Dai,^{a,b,*} Yannain Li,^a Ye Zhang,^b Kwong Wah Lai^b and Jinlong Wu^a

^aLaboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, China ^bDepartment of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,

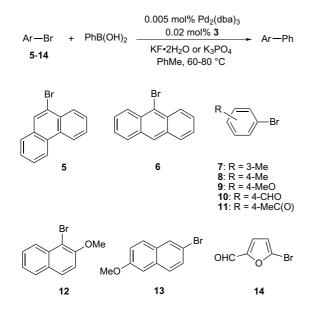

Hong Kong SAR, China

Received 23 October 2003; revised 15 December 2003; accepted 16 December 2003

Abstract—The benzamide-derived P,O-ligands efficiently promoted the Pd-catalyzed Suzuki cross-coupling reactions of aryl bromides with phenylboronic acid at 0.01 mol% of Pd loading at 60–80 °C to form biaryls in excellent yields. A sterically hindered arylboronic acid gave a quantitative yield of the coupling product at 110 °C with 1 mol% Pd. © 2004 Elsevier Ltd. All rights reserved.

The palladium-catalyzed Suzuki cross-coupling reaction of aryl halides with arylboronic acids is a powerful method for accessing structurally diversified biaryls.^{1,2} With recent successful development of bulky and electron-rich phosphines, the Suzuki cross-coupling reaction has significantly advanced to include aryl chlorides,³ fluorides,⁴ and tosylates⁵ and alkyl tosylates⁶ as the substrates. For example, o-(dicyclohexylphosphino)biphenyl 1 was reported to promote the Suzuki cross-coupling of hindered substrates. It also effected the formation of biaryls from aryl bromides at very low catalyst loading (0.001-0.005 mol% of Pd) at 100 °C. The ether-type P,O-ligand 2 was reported to form monophosphine-Pd intermediates featuring both P and O coordinations. Its combination with Pd(dba)₂ provides an efficient catalyst system for the Suzuki crosscoupling of a variety of aryl chlorides at 100-110 °C.8 Moreover, the Suzuki cross-coupling reaction of aryl bromides in the absence of transition metal was reported to take place in hot water (150 °C) under microwave irradiation.⁹ Recently, we disclosed a novel class of 1-naphthamide-derived atropisomeric P,Oligands for the Pd-catalyzed asymmetric allylic alkylation in up to 94.7% ee.¹⁰ We report here on the Suzuki cross-coupling reaction of aryl bromides using the benzamide-derived air-stable P,O-ligands 3 and 4 at low catalyst loading (0.01 mol% of Pd) at 60-80 °C.

The P,O-ligands 3 and 4 were readily prepared from the benzamides in one operation via the amide-directed ortho lithiation¹¹ followed by quenching with (Cy)₂PCl. The tertiary amide moiety in 3 and 4 is considered to deliver two functions: (a) it provides the necessary bulkiness to prevent formation of bisphosphine-Pd complexes as it was noted for the methyl group in 2;^{8b} and (b) the amide carbonyl oxygen acts as a coordinating atom to Pd.¹² Our initial experiments with 3 showed that a 1:2 Pd:ligand ratio¹³ gave the best yields of the biaryl products. Therefore, the reactions shown in Scheme 1 were carried out with 0.005 mol% of Pd₂ (dba)₃ (0.01 mol% of Pd), 0.02 mol% of the P,O-ligand 3, and 3 equiv of $KF \cdot 2H_2O$ or K_3PO_4 as the base in toluene at 60-80 °C. The results are summarized in Table 1.



We first attempted the Suzuki reaction of 3-bromotoluene 7 with phenylboronic acid at room temperature using 0.5 mol % of Pd₂(dba)₃ (1 mol % of Pd). The

Keywords: Amides; Phosphines; Coupling reactions; Aryl bromides.

^{*} Corresponding author. Tel./fax: +86-571-87953128; e-mail addresses: chdai@ust.hk; chdai@zju.edu.cn

^{0040-4039/\$ -} see front matter $\odot 2004$ Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2003.12.142

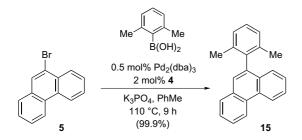
Scheme 1. The Suzuki cross-coupling reaction of aryl bromides.

reaction proceeded initially but almost stopped after 24 h to give the product in 24% yield (entry 6). In contrast, the same reaction carried out at 60 °C completed within 1 h to give the product in 99% yield in the presence of 1 mol% of Pd or the product was obtained in 95% yield after 18 h with 0.01 mol% of Pd (entries 7 and 8). In another set of experiments of 9-bromophenanthrene 5, the effect of Pd loading on the reaction was examined. At 60 °C, the coupling of 5 with phenylboronic acid afforded a 99% yield of the biaryl after 4 h using 1 mol% of Pd whilst a 96% yield was obtained at 80 °C for 26 h using 0.01 mol% of Pd (entries 1 and 2). Further reduction of Pd to 0.0005 mol%, however, significantly diminished the yield of the product to 32% (entry 3). We found that either $KF \cdot 2H_2O$ or K_3PO_4 could be used as the base without remarkable differences.

An electronic effect on the reactivity of 4-substituted phenyl bromides 8–11 was observed. For the phenyl bromides 10 and 11 possessing a C4 electron-withdrawing group, the Suzuki reactions with phenylboronic acid took place at 60 °C with 0.01 mol% of Pd, affording the biaryl products in 95% and 99% yields, respectively (entries 11 and 12). For the electron-rich phenyl bromides 8 and 9, a higher reaction temperature at 80 °C was required for the coupling reactions with 0.01 mol% of Pd, giving excellent yields of 93–99% (entries 9 and 10).

The steric effect also plays an important role on the efficiency of the Suzuki cross-coupling reaction. The reaction of 9-bromoanthracene with PhB(OH)₂ at 60 °C for 40 h in the presence of 0.01 mol% Pd gave the product in 84% yield, which could be improved to 97% using a slightly increased Pd loading of 0.015 mol% (60 °C, 26 h) (entries 4 and 5). More significantly, two naphthalene substrates 12 and 13 gave very different results. With 0.01 mol% of Pd loading at 80 °C for 40 h, 1-bromo-2-methoxynaphthalene 12 gave the product in only 57% yield compared to 2-bromo-6-methoxynaphthalene 13, which afforded the biaryl in 98% yield under the identical reaction conditions (entries 13 and 15). The yield of the reaction of 12 was improved to 86% when 0.1 mol% of Pd was employed (entry 14). Finally, the heterocyclic aryl bromide 14 underwent the Suzuki reaction with phenylboronic acid at 80 °C for 30 h to furnish the product in 90% yield (entry 16). The P,O-ligand 4 acts in a similar manner as 3 and gave slightly better results in some cases (data not shown).

Cross-coupling of sterically hindered substrates via the Suzuki reaction is an attractive method for accessing biaryl atropisomers.^{7b,14} It forms the basis for development of the asymmetric version of this catalytic process.¹⁵ We performed the coupling reaction of **5** with 2,6-dimethylphenylboronic acid using the P,O-ligand **4**


Table 1. Suzuki cross-coupling of aryl bromides with phenylboronic acid using amide-derived P,O-ligand 3^a

Entry	ArBr	Pd loading (%)	Base	Temperature (°C)	Time (h)	Yield (%) ^b
1	5: 9-bromophenathrene	1	KF·2H ₂ O	60	4	99
2	5: 9-bromophenanthrene	0.01	KF·2H ₂ O	80	26	96
3	5: 9-bromophenanthrene	0.0005	K_3PO_4	80	24	32
4	6 : 9-bromoanthracene	0.01	KF·2H ₂ O	60	40	84
5	6 : 9-bromoanthracene	0.015	KF·2H ₂ O	60	26	97
6	7: 3-bromotoluene	1	K_3PO_4	rt	24	24
7	7: 3-bromotoluene	1	K_3PO_4	60	1	99
8	7: 3-bromotoluene	0.01	KF·2H ₂ O	60	18	95
9	8: 4-bromotoluene	0.01	KF·2H ₂ O	80	20	99
10	9: 4-bromoanisole	0.01	KF·2H ₂ O	80	24	93
11	10: 4-bromobenzaldehyde	0.01	KF·2H ₂ O	60	40	95
12	11: 4-bromoacetophenone	0.01	KF·2H ₂ O	60	12	99
13	12: 1-bromo-2-methoxynaphthalene	0.01	KF·2H ₂ O	80	40	57°
14	12: 1-bromo-2-methoxynaphthalene	0.1	KF·2H ₂ O	80	24	86 ^c
15	13: 2-bromo-6-methoxynaphthalene	0.01	KF·2H ₂ O	80	40	98
16	14: 5-bromo-2-furaldehyde	0.01	KF·2H ₂ O	80	30	90

^a Reactions were carried out with 1.0 equiv of aryl bromide, 1.5 equiv of phenylboronic acid, and 3.0 equiv of base in toluene. Pd₂(dba)₃ was used as the catalyst precursor with a Pd:ligand ratio of 1:2.

^b Isolated yield.

^cDebromonation by-product was noted on TLC analysis of the reaction mixture.

Scheme 2. The Suzuki cross-coupling of hindered arylboronic acid.

at $110 \,^{\circ}$ C for 9 h to produce the product 15 in 99.9% yield (Scheme 2).

In summary, we have developed a novel class of amidederived P,O-ligands 3 and 4, which are air-stable and readily available, for the Suzuki cross-coupling of structurally versatile aryl bromides with phenylboronic acid at low Pd loading of 0.01 mol% at 60-80 °C. The P,O-ligands are also effective for cross-coupling of sterically hindered substrates. In our previous work on asymmetric allylic alkylation, enantiomerically pure version of the P,O-ligands has been prepared.¹⁰ Our results presented here form the basis for designing an asymmetric Suzuki cross-coupling employing the 1-naphthamide-derived atropisomeric P,O-ligands. Study on the asymmetric Suzuki cross-coupling is in progress in our laboratories.

Acknowledgements

This work is supported in part by a research grant provided by Zhejiang University. W.-M.D. is the recipent of Cheung Kong Scholars Award of The Ministry of Education of China (2003–2007).

References and notes

- Suzuki, A. In *Metal-Catalyzed Cross-Coupling Reactions*; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998; pp 49–97.
- For recent reviews, see: (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483; (b) Stanforth, S. P. Tetrahedron 1998, 54, 263–303; (c) Suzuki, A. J. Organomet. Chem. 1999, 576, 147–168; (d) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633–9695.
- For a recent review, see: (a) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176–4211; Also, see: (b)

Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. **1998**, *37*, 3387–3388; (c) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. **1998**, *120*, 9722–9723; (d) Bedford, R. B.; Cazin, C. S. J.; Hazelwood, S. L. Angew. Chem., Int. Ed. **2002**, *41*, 4120–4122.

- 4. Widdowson, D. A.; Wilhelm, R. Chem. Commun. 2003, 578–579.
- Nguyen, H. N.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11818–11819.
- (a) Netherton, M. R.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 3910–3912; (b) Kirchhoff, J. H.; Netherton, M. R.; Hills, I. D.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 13662–13663.
- (a) Wolfe, J. P.; Buchwald, S. L. Angew. Chem., Int. Ed. 1999, 38, 2413–2416; (b) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9550– 9561; Also see: (c) Smith, M. D.; Stepan, A. F.; Ramarao, C.; Brennan, P. E.; Ley, S. V. Chem. Commun. 2003, 2652– 2653.
- (a) Bei, X.; Crevier, T.; Guram, A. S.; Jandeleit, B.; Powers, T. S.; Turner, H. W.; Uno, T.; Weinberg, W. H. *Tetrahedron Lett.* **1999**, *40*, 3855–3858; (b) Bei, X.; Turner, H. W.; Weinberg, W. H.; Guram, A. S.; Petersen, J. L. *J. Org. Chem.* **1999**, *64*, 6797–6803.
- Leadbeater, N. E.; Macro, M. Angew. Chem., Int. Ed. 2003, 42, 1407–1409; Also see: Li, C.-J. Angew. Chem., Int. Ed. 2003, 42, 4856–4858.
- Dai, W.-M.; Yeung, K. K. Y.; Liu, J.-T.; Zhang, Y.; Williams, I. D. Org. Lett. 2002, 4, 1615–1618.
- 11. Snieckus, V. Chem. Rev. 1990, 90, 879-933.
- For examples of X-ray crystal strucutres of amide-type P,O-coordination with Pd, see: (a) Butts, C. P.; Crosby, J.; Lloyd-Jones, G. C.; Stephen, S. C. *Chem. Commun.* 1999, 1707–1708; (b) Kim, Y. K.; Lee, S. J.; Ahn, K. H. J. Org. *Chem.* 2000, 65, 7807–7813.
- 13. The Pd:ligand ratios of 1:2 and 1:3 were used for 1 (Ref. 7b) and 2 (Ref. 8b), respectively.
- (a) Yin, J.; Rainka, M. P.; Zhang, X.-X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 1162–1163; (b) Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. Angew. Chem., Int. Ed. 2003, 42, 3690–3693.
- 15. Examples of asymmetric Suzuki reaction, see: (a) Nicolaou, K. C.; Li, H.; Boddy, C. N. C.; Ramanjulu, J. M.; Yue, T.-Y.; Natarajan, S.; Chu, X.-J.; Bräse, S.; Rübsam, F. Chem. Eur. J. 1999, 5, 2584-2601; (b) Cammidge, A. N.; Crépy, K. V. L. Chem. Commun. 2000, 1723-1724; (c) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2000, 122, 12051-12052; (d) Castanet, A.-S.; Colobert, F.; Broutin, P.-E.; Obringer, M. Tetrahderon: Asymmetry 2002, 13, 659-665; (e) Bringmann, G.; Hamm, A.; Schraut, M. Org. Lett. 2003, 5, 2805-2808; (f) Jensen, J. F.; Johannsen, M. Org. Lett. 2003, 5, 3025-3028; (g) Herrbach, A.; Marinetti, A.; Baudoin, O.; Guénard, D.; Guéritte, F. J. Org. Chem. 2003, 68, 4897-4905; (h) Spivey, A. C.; Zhu, F.; Mitchell, M. B.; Davey, S. G.; Jarvest, R. L. J. Org. Chem. 2003, 68, 7379-7385; Also, see: (i) Kamikawa, K.; Watanabe, T.; Uemura, M. J. Org. Chem. 1996, 61, 1375-1384; (i) Broutin, P.-E.; Colobert, F. Org. Lett. 2003, 5, 3281-3284.